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Abstract

Thispaperdescribesan approach for the fusionof 3D
data underwaterobtainedfrom multiple sensingmodali-
ties. In particular, weexaminethecombinationof image-
basedStructure-From-Motion(SFM) data with bathymet-
ric dataobtainedusingpencil-beamunderwatersonar, in
order to recover theshapeof theseabedterrain. We also
combineimage-basedegomotionestimationwith acoustic-
basedandinertial navigationdataon board theunderwa-
ter vehicle.

We examinemultiple typesof fusion. Whenfusion is
performedat the datalevel, each modality is usedto ex-
tract 3D information independently. The3D representa-
tionsare thenalignedandcompared. In this case, weuse
the bathymetricdata as groundtruth to measure the ac-
curacy and drift of the SFM approach. Similarly we use
thenavigationdataasgroundtruth againstwhich wemea-
sure the accuracy of the image-basedego-motionestima-
tion. To our knowledge, this is the �r st quantitativeeval-
uationof image-basedSFMandegomotionaccuracy in a
large-scaleoutdoorenvironment.

Fusionat thesignallevelusestherawsignalsfrommul-
tiple sensors to producea singlecoherent 3D representa-
tion which takesoptimal advantage of the sensors' com-
plementarystrengths.In this paper, weexaminehowlow-
resolutionbathymetricdatacanbeusedto seedthehigher-
resolutionSFM algorithm, improving convergencerates,
andreducingdrift error. Similarly, acoustic-basedandin-
ertial navigationdata improvestheconvergenceanddrift
propertiesof egomotionestimation.
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1 Intr oduction
1.1 Moti vation

Weconsiderthescenarioof anunderwaterroboticvehi-
cle traveling throughan unknown environment. The re-
quirementsfor typical archaeological,biological, foren-
sic andgeologicalapplicationsoften call for high resolu-
tion quantitative mappingof suchpreviously unsurveyed
sites.Wenotethatthelimited view associatedwith optical
andacousticsensorsunderwaterimpliescollectinga large
numberof sensorreadings,andcorrespondingnavigation
readings,whicharecompositedinto aglobalperspective.

Thus the requirementfor high resolutionmappingin
turn necessitatesa methodologyfor high resolutionnav-
igation information. Thereareseveral sensingmodalities
whicharetraditionallyusedfor thispurpose.For underwa-
ter vehicles,the mostcommonmethodof measuringter-
rainstructureusesbathymetricdatafrom acousticsensors.
For navigation, vehiclestypically useacoustictranspon-
dersin combinationwith inertialnavigationmeasurements.

Thesemodalities,for bothterrainmappingandnaviga-
tion, have their strengthsandweaknesses:

� Bathymetry: Bathymetricsensorsunderwaterutilize
time of �ight for range-sensingwhile focussingthe
beamusingan arrayof transducers(for transmit,re-
ceiveor both)into averytight cone.Theresolutionof
suchsensorsis afunctionof thefrequency. Moreover,
thereis a tradeoff betweenresolution(frequency) and
the rangeashigher frequenciesareattenuatedmuch
fasterdueto absorptionin seawater. In a typical de-
ployment the bathymetric beamis scannedover the
terrain while the vehicle translatesperpendicularto
thedirectionof scanning.As pointedout earlier, ac-
cumulationof dataovertimerequiresnavigationdata,



acquiredindependently. In reality, the resolutionof
the bathymetric map is usually limited by the reso-
lution of thenavigation(Section2.1 discussesthis at
lengthandincludesadiscussionof whenthisdoesnot
hold true).

� Acoustic Navigation - Long baseline / Inertial:
Acoustic long baseline (LBL) navigation utilizes
�x edtransponderbeaconson theocean�oor thatcan
be interrogatedfrom the vehicle. By calculatingthe
time of �ight from thevehicleto severalbeaconsone
cantriangulatethe positionof the vehicle. Heretoo
thereis a fundamentaltradeoff betweenthe rangeof
the navigation systemand the resolutiondue to the
more rapid attenuationof higher versuslower fre-
quencies.We notealsothatbesideslower rangeres-
olution, the larger rangesassociatedwith lower fre-
quenciesalsolimit our updateratebetween�x esdue
to longer travel times associatedwith acousticen-
ergy travelling betweenthe vehicleandtransponder.
LBL navigationdoeshowever provide a boundeder-
ror over the entire rangeof operation. In addition
to LBL, acousticdopplercurrentpro�lers are often
usedto obtain vehicle velocity information that can
beintegratedwith vehicleattitudeinformationto ob-
tain high resolutionnavigation at higher(thanLBL)
updaterates.However, by itself, thenavigationerror
grows asa functionof distancetravelled. Typically a
complementary�lter is usedto blendLBL andinertial
navigation.

� Stereo: Traditional stereosystemsrely on estab-
lishing correspondencebetweentwo cameraimages
takensimultaneously. They cangeneratehigh resolu-
tion depthmaps,of theorderof thepixel resolutionof
thecameras.Accuracy canbehigh,but it diminishes
with distanceto thetargetobject;it is alsodependent
on the FOV, and the baselinedistancebetweenthe
cameras.On the otherhand,stereois computation-
ally expensive, and traditional real-timeapproaches
havedif�culty with regionsof low imagetexture,and
nearocclusionboundaries.Also, stereocomputation
providesonly an instantaneousrangemapfrom each
location. In order to combinethis streamof range
datainto a coherentswath of rangedataasthe vehi-
clemoves,thenavigationof thevehiclemustbetaken
into accountin orderto align the rangeimages.Un-
fortunatelywenotethattheuseof LBL / inertialnav-
igation is by itself doesnot provide enoughaccuracy
to combinetherangedataseamlessly.

� Structur e-from-Motion: SFM techniques[2], [5],
[4] generallyestimateboth terrainstructureandego-
motion of the hostvehiclesimultaneously, usingse-
quencesof cameraimagesas input. This is both

goodandbad. On the positive side,the estimatesof
structureandegomotionareself-consistent.On the
otherhand,thisenforcedself- consistency meansthat
any errorsin the egomotionestimatewill have cor-
respondingerrorsin the structureestimate,in order
to keepconsistentwith the imagestream. A typical
exampleof this involvesthewell-known ”ambiguity”
betweensmall rotationsand small translationsof a
camerasystem: it is easyto confusethe two based
on imagedataalone.SFM methodsprovide high res-
olution rangedata,which is also alignedover long
sequencesof images.Accuracy canbehigh,although
it is impactedby errorsin egomotionandgrows over
time, as describedabove. Similarly, SFM methods
theoreticallyoffer pixel-level precisionin egomotion
estimates,thoughthis is impactedby errorsin shape
estimation.SFM is alsogenerallyvery computation-
ally expensive.

Ideally, one would like to usea combinationof these
complementarysensors.However, thefusionof datafrom
multiplemodalitiesis adif�cult problem.The�rst stepin-
volvesalignmentbetweenthe sensors,which gatherdata
at asynchronoustimes,andhave differing characteristics.
Oncethedatahasbeenaligned,theproblemof providing
the mostaccurateestimateof rangeandegomotionbased
on themultiple, possiblycon�icting, inputsis anotherun-
solvedareaof research(estimationtheory).

Thispaperaddressestheproblemof fusingacomputer-
vision SFM algorithmwith othersensormodalitiesto re-
cover both egomotionand structureof the environment.
For this purpose,we selectedaniterative,multi-resolution
SFM algorithm describedin the literature [3]. The
multi-resolutionaspectallowedcombinationwith sensing
modalitiesof differing resolution. The iterative natureof
thealgorithmallowedusto fusein othermodalitiesby in-
jecting informationfrom theseothersensorsat eachitera-
tion. In this way, we ”guided” theSFM algorithmto con-
verge on the consistentsolutionwhich bestmatchedwith
theothermodalities.

Our focus is on underwatervehicles,andin particular
themodalitiesof bathymetry(for shapeinformation),high
frequency LBL navigationdata(for egomotion)andSFM
structureandegomotion.

1.2 Levelsof SensorFusion
In this paperwe examinemultiple levels of sensorfu-

sion.

1.2.1 Data-level fusion

Thesimplestform of fusioninvolvesallowing eachsensor
modalityto operateindependently, andthento combinethe
dataproducedasa �nal step. We term this fusionat the
datalevel. In ourcase,anexamplealgorithmwouldbe:



1. RunSFMontheimagesequence.Useiterative,multi-
resolutionapproachto convergeon a consistentsolu-
tion to bothbothegomotionandstructurein thescene.

2. Gathernavigation data about the vehicle's position
over timeusingLBL data.

3. Gatherbathymetric acousticdata using a combina-
tion of theLBL navigationdata(position)andpencil-
beambathymetric sonargiving a ”scanline” of data
percycle.

4. Align the egomotionfrom SFM with the navigation
data.

5. Align theSFMshapedatawith thebathymetry.

6. Compareor combinetheresults.

We have implementedthis approach,as describedin
section3.1. In our case,step6 of theabove approachcon-
sistedof comparingthe SFM with the bathymetry results
in orderto evaluatetheperformanceof theSFMapproach.
Hence,we assumedthe acousticdatato be groundtruth.
This is a reasonableassumption,sincethoughsonarpro-
duceslow resolutiondata,theaccuracy of therangeinfor-
mationis independentof the distanceto the terrain. Fur-
ther, thesensorerrordoesnot accumulateover time,since
the beacon-basednavigation dataaspointedout earlieris
boundedover theentiresite.

1.2.2 Signal-level fusion

A morecomplex versionof sensorfusioncombinesinfor-
mationfrom multiple sensorson an ongoingbasisto pro-
vide a singlecoherentrepresentation.We termthis fusion
at thesignallevel.

Signal-level fusion is particularlyuseful in the caseof
SFM. Consider, for instance,SFM without externalinfor-
mationfrom othersensingmodalities:In general,theprob-
lemsof estimatingegomotionandstructurefrom imagese-
quencesaremutuallydependent.Prioraccurateknowledge
of egomotionallowsstructureto becomputedby triangula-
tion from correspondingimagepoints.This is theprinciple
behindstandardparallel-axisstereoalgorithms,wherethe
baselineis known accuratelyfrom calibration.In thiscase,
knowledgeof theepi-polargeometryprovidesfor ef�cient
searchfor correspondingpoints.

On the otherhand,if prior informationis availablere-
gardingthestructureof thescene,thenegomotioncanbe
computeddirectly. Essentially, oneconsidersthespaceof
all possibleposesof thecamera.Onethensearchesfor the
posefor which the perspective projectionof the environ-
mentontotheimageplanemostcloselymatchestheactual
imageobtained.

When neitheraccurateegomotionnor structureinfor-
mation is available, a classicalchicken-and-egg problem
exists: We needegomotionto estimategoodstructure,and
weneedshapeinformationto estimategoodegomotion.To
solve this problem,we selecteda correlation-basedalgo-
rithm in theliteraturewhichassumesaverycoarsestarting-
point for both egomotionandstructure,andthenalterna-
tively anditeratively re�nes theestimatesof both.Theup-
datedestimateof egomotionis usedto obtainanimproved
estimateof structure,whichin turnisusedto re�ne theesti-
mateof egomotion.Thealgorithmconvergesonasolution
whichprovidesconsistency betweenegomotion,recovered
shape,andtheimagesequence.

Non-uniqueness: Note that the solution obtainedby
sucha convergentapproachis guaranteedto beconsistent,
but notnecessarilyunique.For example,awell-known am-
biguity in SFM exists betweensmall rotationsandsmall
translationsof thecamera.Whenimaginga distantscene,
asmalltranslationto theright inducesauniform�o w-�eld,
with �o w vectorspointing leftwards, and all parallel to
eachother. On the other hand,a small pan of the cam-
erato the right causesa very similar �o w �eld. Theonly
differencebetweenthetwo �o w �elds occursatthetopand
bottomof the �elds: in thecaseof panning,the �o w vec-
torsarenot quiteparallel,but ratherlie on slightly curved
lines. However, for small motions,andregular FOV, the
differenceis verydif�cult to measure.

In thecaseof SFM, theproblemis reversed.Giventhe
imagesequences,onecancomputethe�o w �elds. Oneis
thenleft with theproblemof inferringthechangingcamera
pose,i.e. whetherthecameraindeedpannedor translated.
Sincethe differencebetweenthe two �o w �elds is below
thenoiselevel of the�o w-�eld estimationprocess,thetwo
egomotionscannotbedistinguishedaccurately.

Sucherrorsin egomotionpropagateinto theestimation
of shape,sinceatall timesconsistency betweenshape,ego-
motion,andimagerymustbe maintained.Thus,multiple
consistentsolutionsare possible. In our above example,
onesolutionmaydescribea a camerawhich is translating
andslowly panningover a curved surface,while another
solution describesa non-rotatingcamerapanningover a
�at surface. Both solutionswould be consistentwith the
input imagery.

Obtaining the ”corr ect” solution:
In this paper, we useother sensormodalitiesto force

SFM to converge to the solutionwhich bestmatchesthe
othersensordata.As a result,theSFM solutionfor shape
becomesconsistentwith thebathymetricsolution,andthe
resolutionof therecoveredsurfaceis vastlyenhanced.

In summary, the bathymetry is usedto constrainthe
SFM algorithmto converge on a solutionwhich matches
actualreal-world shape,andtheSFMresultsarethenused
to greatlyenhancethe resolutionof the recoveredterrain.
The fusionof the two complementarymodalitiesis better



Figure 1: Vehicleandsensorfootprint of thebathymet-
ric sonar. During survey operationsthevehicleis driven
very slowly so that theconsecutive scansalongtrackare
closelyspacedfor maximumredundancy

thaneitheronecouldproduceindividually.

1.3 Contrib utions
Thecontributionsof thispaperare:

1. To ourknowledge,thispaperrepresentsthe�rst quan-
titative evaluationof image-basedSFM andegomo-
tion accuracy in a large-scaleoutdoorenvironment.

2. Thepaperillustrateshow SFMcanbedirectedto con-
vergeon a consistentsolutionwhich is ”close” to the
correctsolution,by incorporatingdatafrom comple-
mentarysensingmodalities.

3. A signal-level fusion of data from complementary
modalitiesona large-scaleoutdoorreal-world scene.

2 Background
Thecon�gurationof thevehicle,camera,andside-scan

sonaris shown in �gure 1.

2.1 High resolution3D bathymetric mapping
Sonarsensorscapableof cm level resolutionin under-

waterapplicationshave existedfor decades,but our abil-
ity to generateself-consistentmapsat theseresolutionshas
until recentlybeenlimited by thelackof comparablenavi-
gationaccuracy.

The Imagenex 675 Khz pencil beamsonar[1] usedin
collecting the datafor this paper, for example,hasbeen
availablecommerciallyfor over 15 yearsandhasa range
resolutionof 1 cmandabeamangleto the3dBdown point
of 1.5degrees.Thenavigationresolutionof acousticlong
baseline(LBL) systemswhich are typically usedfor XY
navigation underwater on the other hand,is of the order
of 1-10m. Further, the updateratesfor the sonarversus

thenavigationarealsosigni�cantly different(10Hz asop-
posedto 0.1Hz respectively).

Recentadvancesin navigation [8] - the useof higher
frequency (300 kHz) LBL systemsthat can provide cm
level precision taken in combinationwith bottom lock
acousticdopplercurrentpro�lers (ADCPs)thatprovideve-
locity estimatesat high updaterates- have yieldedXY es-
timatesof theorderof sensorprecisionandat comparable
updaterates.

Theoretically, the constructionof a bathymetric map
is the simpleprocessof compensatingfor the coordinate
transformationsthatconvert datain a sensorframe(range
andanglefrom the sensor)to a vehiclecoordinateframe
andthento aworld referencedcoordinatesystem.

Undertheassumptionof perfectinformationthebathy-
metricsurvey canbeexpressedby theequations

pv = S � ps (1)

pw = V � pv = V � S � ps (2)

where ps, pv , and pw are the individual sonar sen-
sor readings(ping) coordinatesin the sensor, vehicleand
world coordinateframesrespectively asexpressedin ho-
mogeneous[4 � 1] coordinates.

S is the[4� 4] homogeneouscoordinatetransformation
matrix which relatesthesensorto vehicleframeandV is
the[4 � 4] homogeneouscoordinatetransformationmatrix
which relatesthevehicleto world coordinateframe.

The resultsof simply applyingtheseequationsto data
acquiredfrom � ve overlappingpasses(Figure2) is shown
in Figure3. Theseresultsareseento be inconsistentover
thedifferentpasses.Theinconsistency of theseresultshas
beenshown to bea functionof thesmallcalibrationbiases
thatoccurdueto thedistributednatureof theattitudesen-
sorsacrossthevehicle[6].

If we considerthe inexact estimatesof the S and V
transforms,the transformationof pings to world coordi-
nateshaserrors

p̂w = V̂ � Ŝ � ps (3)

Sinceeachtransformhas6 degreesof freedom,it would
seemthatthereare12parametersto determine.However,

pw = V � S � ps (4)

canalsobeexpressedas

pw = V̂ � (V̂ � 1 � V ) � (S � Ŝ� 1) � Ŝ � ps (5)

where(V̂ � 1 �V ) is thetransformfrom theworld coordi-
nateframeto theapproximatevehicleframeand(S � Ŝ� 1)
is the transformfrom approximatevehicle frameto ideal
vehicleframe.

De�ning � ,
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Figure2: Thefootprintsof � veoverlappingbathymetric
swaths.Overlappingredundantdatais themostpowerful
techniqueutilizedunderwaterto examineselfconsitency
andthustheaccuracy of amap.

� = (V̂ � 1 � V ) � (S � Ŝ� 1) (6)

we point out that the real world coordinatesaregiven
by:

pw = V̂ � � � Ŝ � ps (7)

Moreover, since � is a transformationmatrix, it has
only 6 DOF andnot 12 asmight have seemedoriginally.
� takestheform:

� =
�

� � � x
0 0 0 1

�
(8)

where� � [3 � 3] is theattitudebiasof thesensorframe
with respectto thevehicleframeand� x[3� 1] is theposi-
tion biasof thesensorframerelative to thevehicleframe.

It hasbeenshown [6] that detailedsurvey maneuvers
canbeperformedthatallow theestimationof � . The re-
sultsof estimatingandcompensatingfor � areshown in
Figure3 whichareseento beconsistentto thelimits (5cm)
atwhich thisdatawasgridded.

2.2 Structur e-From-Motion
We use the describedin [3] to recover terrain shape

andcameramotion from a video sequence.The input to
thealgorithmconsistsof thecamera-to-world transforma-
tion for the�rst referenceframeH 0w , thefocal lengthand
somecoarseego-motionand shapeestimates.Note that
that thesecould be very coarse(suchasa fronto-parallel
planeat in�nity for shapeor zeroego-motion). The out-
put is a list L of 3D pointsin world coordinates(initially
empty)andthe camera-to-world transformationsH iw for
every framei .

Figure 3: A comparisonof bathymetricmappingbefore
and after compensatingfor attitudebiases. The head-
ing biastendsto smearout individual featuresalongtrack
while theroll biasanddepthoffsetsintroducelineardis-
continuitiesandsmearingperpendicularto thedirection
of travel. This site is a Phoenicianshipwreckdatingto
750B.C. off of thecoastof Israelin approximately400
metersof waterdepth
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Figure 4: Severalframesfrom a longersequence,with their respective coordinatesystems(xyz). Theworld coordinatesystem
is denoted(X Y Z ). H ij is thehomogeneoustransformationbetweencoordinatesystemsi andj .

Theinputsequenceis processedin batchesconsistingof
a few consecutive frames,with at leastoneframeoverlap
betweenconsecutive batches. The algorithm repeatsthe
following steps:

� Processthecurrentbatch,with referenceframer , as
describedin [3]. The result is a densedepth map
D r in a framer centeredcoordinatesystemandego-
motion relative to the referenceframe for every in-
spectionimagei in thecurrentbatch(
 ir , T ir ).

� Projectevery point in thecurrentdepthmapinto the
world coordinatesystemandaddit to the list of 3D
points:

L = L [ f H r w d j d 2 D r g

� If this is thelastbatch,stop.
� Let k denotethe referenceframe of the next batch.

From H r w , 
 k r , T k r computecamera-to-world and
world-tocameratransformationsH kw ; Hwk for I k .

� Projectthe pointsin L that arevisible in I k into D k
(the initial depthestimatefor the next batch)andre-
move themfrom L:

L 0 = f t 2 L j visibl e(t ; I k ; f )g
D k = f Hwk t 0 j t 0 2 L 0g
L = L n L 0

After processingthe last batch,L is a list of dense3D
points in the world coordinatesystem. For visualization,
thepointsareprojectedon a planeandDelaunaytriangu-
lation is usedto generatea meshsuitablefor texturemap-
ping. No additionalparametricsurface�tting is used.

One obvious issuein comparingthe bathymetric and
SFM rangedatais thechoiceof origin. Evena smalloff-
setbetweenthepositionandtheorientationof theorigin in
the two datasetscould leadto errorsthat areof the same
orderas producedby the SFM algorithm itself. Thus to
align the two independentdatasetswe choseto manually

pick commonfeaturesacrossthedatasetsandto �t asingle
af�ne transformationacrossthesecommonfeatures.This
resultedin acommonorigin andorientationwith respectto
whichwecouldmake comparisons.

3 Experiments
3.1 Performanceevaluation: Romansequence

The �rst exampleis usingdatacollectedat the site of
a Romanshipwreck.Figure5 shows theheightmapsob-
tainedfrom bathymetry (left) andSFM on a sequenceof
11 frames.Figure6 shows a texture-mappedrenderingof
the terrain. No navigationaldatawasusedin theSFM al-
gorithm.Sinceindividualamphoraearerelatively isolated,
thissequenceallowsusto hand-selectalignmentpointsbe-
tweenbathymetry and structureobtainedusing the SFM
algorithm.

Weselectedasmallnumberof points(12)in thetwo 3D
structuresandcomputeda rigid body transformationthat
bringsthe SFM datainto alignmentwith the bathymetry.
Figure 7 shows a crosssectionthroughthe two surfaces
(theSFM surfaceis sampledat thesameresolutionasthe
bathymetry).Notethattheoverall terraincon�gurationhas
beencorrectlyrecoveredby SFM.

3.2 Performance evaluation: Phoenician se-
quence

The secondexample is for a longer sequence(56
frames) at the site of a Phoenicianshipwreck. Fig-
ure 8 (bottom)shows the terrainstructureobtainedfrom
bathymetryandthecamerapositionover time,asreported
by thenavigationsystem.Theterrainis presentedasa 3D
meshwith false-colorcodingof height.Theleft partshows
a top-down view, andthe right sidea “side” view, which
illustratesthe terraincon�guration. Unit axesaremeters
(thenegative valuesfor theZ axisrepresentdepthre mean
sealevel).

The top row shows resultsfrom the SFM algorithm.



Figure 5: Heightmaprecoveredfrom bathymetry (left)
andSFM (right). The differencein resolutionis easily
notable

Figure 6: Texture-mappedrenderingof the terrain re-
coveredfrom SFM.
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Figure 7: Comparisonof 3D recovered from image-
basedSFM(reddots)andbathymetry(bluecircles).The
unitsaremetersfor bothaxes

The sequenceof 56 frameswasprocessedin consecutive
batches(2 framesat a time). Information aboutcamera
motionwasprovidedfor the�rst batch,in orderto getthe
right scalefactor. One can seefrom the resultsthat the
algorithm“drifts” over time. While local structureis cor-
rectly recovered,theglobashapeof theterrainis not. This
is mainly due to the small rotation vs. small translation
confusion(asdiscussedin theintroduction).

Thecenterrow showstheresultsof theSFMalgorithm,
with navigationaldataprovidedasinitial ego-motionesti-
matesfor everybatch.Theoveraldrift hasbeeneliminated.

4 Conclusion
We presentedexamplesof multi-modaldatacombina-

tion for recovering high-resolutionterrain structureover
extendedareas. By using navigational datato constrain
a structurefrom motion algorithm, we showed that the
“drift” of the SFM algorithm over long video sequences
canbegreatlyreduced.

A known solutionfor obtainingglobally correctshape
is to usebundleadjustment([7]) asa �nal stepin SFM.
However, the bundleadjustmentstepis time consuming,
and can only be appliedafter all the datahasbeenpro-
cessed.By usingnavigationaldataasinitial estimatesfor
SFM, resultscanbeobtainedcontinuously, asthevehicle
movesthroughtheenvironment.
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