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Abstract

This paperdescribesan approad for the fusionof 3D
data underwaterobtainedfrom multiple sensingmodali-
ties. In particular, we examinethe combinationof image-
basedStructue-From-Motion(SFM) data with bathymet-
ric dataobtainedusingpencil-beanunderwatersonar in
order to recover the shapeof the seabederrain. We also
combineémage-basedgomotionestimationwith acoustic-
basedandinertial navigationdataon board the underwa-
ter vehicle

We examinemultiple typesof fusion. Whenfusionis
performedat the datalevel, eadh modalityis usedto ex-
tract 3D informationindependently The 3D representa-
tionsare thenalignedand compaed. In this case we use
the bathymetricdata as groundtruth to measue the ac-
curacy and drift of the SFM approach. Similarly we use
thenavigationdataasgroundtruth againstwhich wemea-
sure the accumacy of the image-basedego-motionestima-
tion. To our knowledg, this is the r st quantitativeeval-
uation of image-basedSFM and egomotionaccuracyin a
large-scaleoutdoorervironment.

Fusionatthesignallevelusegherawsignalsfrommul-
tiple sensos to producea singlecoheent 3D representa-
tion which takes optimal advantae of the sensos' com-
plementarystrengths.In this paper we examinehow low-
resolutionbathymetricdatacanbeusedio seedhehigher
resolutionSFM algorithm, improving corvemencerates,
andreducingdrift error. Similarly, acoustic-basedndin-
ertial navigationdataimprovesthe corvergenceand drift
propertiesof egomotionestimation.
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1 Intr oduction
1.1 Motivation

We considethescenariof anundervaterroboticvehi-
cle traveling throughan unknavn ervironment. The re-
guirementsfor typical archaeologicalbiological, foren-
sic andgeologicalapplicationsoften call for high resolu-
tion quantitatve mappingof such previously unsuneyed
sites.We notethatthelimited view associateavith optical
andacousticsensorsindervaterimpliescollectinga large
numberof sensoreadingsand correspondinghavigation
readingswhich arecompositednto a global perspectie.

Thus the requirementfor high resolutionmappingin
turn necessitatea methodologyfor high resolutionnav-
igation information. Thereare several sensingmodalities
whicharetraditionallyusedfor this purpose For underva-
ter vehicles,the mostcommonmethodof measuringer
rain structureusesbathymetricdatafrom acousticsensors.
For navigation, vehiclestypically useacoustictranspon-
dersin combinatiorwith inertialnavigationmeasurements.

Thesemodalities for bothterrainmappingandnaviga-
tion, have their strengthsandweaknesses:

Bathymetry: Bathymetricsensorsindervaterutilize
time of ight for range-sensingvhile focussingthe
beamusingan arrayof transducergfor transmit,re-
ceive or both)into averytight cone. Theresolutionof
suchsensorss afunctionof thefrequeng. Moreover,
thereis atradeof betweerresolution(frequeng) and
the rangeas higherfrequenciesare attenuatednuch
fasterdueto absorptionn seawater In atypical de-
ploymentthe bathymetric beamis scannedover the
terrain while the vehicle translategperpendiculato
the directionof scanning.As pointedout earlier ac-
cumulationof dataovertime requiresnavigationdata,



acquiredindependently In reality, the resolutionof
the bathymetric mapis usually limited by the reso-
lution of the navigation (Section2.1 discusseshis at
lengthandincludesadiscussiorof whenthis doesnot
hold true).

Acoustic Navigation - Long baseline / Inertial:
Acoustic long baseline (LBL) navigation utilizes
x edtranspondebeacon®ntheoceanoor thatcan
be interrogatedfrom the vehicle. By calculatingthe
time of ight from thevehicleto severalbeacon®ne
cantriangulatethe position of the vehicle. Heretoo
thereis a fundamentatradeof betweernthe rangeof
the navigation systemand the resolutiondue to the
more rapid attenuationof higher versuslower fre-
guencies.We notealsothatbesidedower rangeres-
olution, the larger rangesassociatedvith lower fre-
guencieslsolimit our updateratebetweenx esdue
to longer travel times associatedvith acousticen-
emgy travelling betweenthe vehicle and transponder
LBL navigation doeshowever provide a boundeder-
ror over the entire rangeof operation. In addition
to LBL, acousticdopplercurrentpro lers are often
usedto obtain vehicle velocity information that can
be integratedwith vehicleattitudeinformationto ob-
tain high resolutionnavigation at higher (thanLBL)
updaterates.However, by itself, the navigation error
grows asa function of distanceravelled. Typically a
complementanyter isusedo blendLBL andinertial
navigation.

Stereo: Traditional stereo systemsrely on estab-
lishing correspondencbetweentwo cameraimages
takensimultaneouslyThey cangeneratéigh resolu-
tion depthmaps of theorderof thepixel resolutionof
thecamerasAccuray canbe high, but it diminishes
with distanceto thetargetobject;it is alsodependent
on the FOV, and the baselinedistancebetweenthe
cameras.On the other hand, stereois computation-
ally expensve, and traditional real-time approaches
have dif culty with regionsof low imagetexture,and
nearocclusionboundaries Also, stereocomputation
providesonly aninstantaneousangemapfrom each
location. In orderto combinethis streamof range
datainto a coherentswath of rangedataasthe vehi-
clemoves,thenavigationof thevehiclemustbetaken
into accountin orderto align the rangeimages.Un-
fortunatelywe notethatthe useof LBL / inertial nav-
igationis by itself doesnot provide enoughaccurag
to combinetherangedataseamlessly

Structur e-from-Motion: SFM techniqueq?2], [5],
[4] generallyestimateboth terrainstructureand ego-
motion of the hostvehicle simultaneouslyusing se-
guencesof cameraimagesas input. This is both

goodandbad. On the positive side, the estimatef

structureand egomotionare self-consistent.On the

otherhand,this enforcedself- consisteng meanghat
ary errorsin the egomotionestimatewill have cor-

respondingerrorsin the structureestimate,in order
to keepconsistentwith the imagestream. A typical

exampleof this involvesthewell-known "ambiguity”

betweensmall rotationsand small translationsof a

camerasystem: it is easyto confusethe two based
onimagedataalone.SFM methodsprovide highres-
olution rangedata, which is also aligned over long

sequencesf images.Accuray canbehigh, although
it is impactedby errorsin egomotionandgrows over

time, as describedabore. Similarly, SFM methods
theoreticallyoffer pixel-level precisionin egomotion
estimatesthoughthis is impactedby errorsin shape
estimation.SFM is alsogenerallyvery computation-
ally expensve.

Ideally, onewould like to usea combinationof these
complementargensorsHowever, the fusion of datafrom
multiple modalitiesis adif cult problem.The rst stepin-
volves alignmentbetweenthe sensorswhich gatherdata
at asynchronousimes, and have differing characteristics.
Oncethe datahasbeenaligned,the problemof providing
the mostaccuratesstimateof rangeand egomotionbased
on the multiple, possiblycon icting, inputsis anotherun-
solvedareaof researcl{estimatiorntheory).

This paperaddressethe problemof fusinga computer
vision SFM algorithmwith othersensomodalitiesto re-
cover both egomotion and structureof the ervironment.
For this purposewe selectedaniterative, multi-resolution
SFM algorithm describedin the literature [3]. The
multi-resolutionaspectallowed combinationwith sensing
modalitiesof differing resolution. The iterative natureof
thealgorithmallowed usto fusein othermodalitiesby in-
jectinginformationfrom theseothersensorst eachitera-
tion. In this way, we "guided” the SFM algorithmto con-
verge on the consistensolutionwhich bestmatchedwith
theothermodalities.

Our focusis on undervatervehicles,andin particular
the modalitiesof bathymetry (for shapanformation),high
frequeng LBL navigation data(for egomotion)and SFM
structureandegomotion.

1.2 Levelsof SensorFusion

In this paperwe examinemultiple levels of sensorfu-
sion.

1.2.1 Data-level fusion

The simplestform of fusioninvolvesallowing eachsensor
modalityto operatendependentlyandthento combinethe

dataproducedasa nal step. We term this fusionat the

datalevel. In our case anexamplealgorithmwould be:



1. RunSFMontheimagesequenceUseiterative, multi-
resolutionapproacho corverge on a consistensolu-
tion to bothbothegomotionandstructuren thescene.

2. Gathernavigation data aboutthe vehicle's position
overtime usingLBL data.

3. Gatherbathymetric acousticdata using a combina-
tion of theLBL navigationdata(position)andpencil-
beambathymetric sonargiving a "scanline” of data

percycle.

4. Align the egomotionfrom SFM with the navigation
data.

5. Align the SFM shapeadatawith the bathymetry.
6. Compareor combinetheresults.

We have implementedthis approach,as describedin
section3.1. In our case step6 of theabove approactcon-
sistedof comparingthe SFM with the bathymetry results

in orderto evaluatethe performancef the SFM approach.

Hence,we assumedhe acousticdatato be groundtruth.
This is a reasonablessumptionsincethoughsonarpro-
ducedow resolutiondata,theaccurag of therangeinfor-
mationis independentf the distanceto the terrain. Fur
ther, the sensorerrordoesnot accumulatever time, since
the beacon-basedavigation dataas pointedout earlieris
boundedvertheentiresite.

1.2.2 Signal-level fusion

A morecomple versionof sensoifusion combinesnfor-
mationfrom multiple sensor®n an ongoingbasisto pro-
vide a singlecoherentepresentationWe termthis fusion
atthesignallevel.

Signal-level fusionis particularly usefulin the caseof
SFM. Consider for instance SFM without externalinfor-
mationfrom othersensingnodalities:In generalthe prob-
lemsof estimatingeggomotionandstructurefrom imagese-
guencesremutuallydependentPrioraccurat&knowvledge
of egomotionallows structureto becomputedy triangula-
tion from correspondingmagepoints. Thisis theprinciple
behindstandardparallel-axissterecalgorithms,wherethe
baselings known accuratelyfrom calibration.In this case,
knowledgeof the epi-polargeometryprovidesfor ef cient
searcHor correspondingoints.

On the otherhand,if prior informationis availablere-
gardingthe structureof the scene thenegomotioncanbe
computeddirectly. Essentiallyoneconsiderghe spaceof
all possibleposesf thecameraOnethensearchesor the
posefor which the perspectie projectionof the erviron-
mentontotheimageplanemostcloselymatchegheactual
imageobtained.

When neitheraccurateegomotion nor structureinfor-
mationis available, a classicalchicken-and-gg problem
exists: We needegomotionto estimategoodstructureand
we needshapénformationto estimategoodegomotion.To
solwve this problem,we selecteda correlation-basedlgo-
rithmin theliteraturewhichassumeavery coarsestarting-
point for both egomotionand structure,andthenalterna-
tively anditeratively re nes the estimate®f both. Theup-
datedestimateof egomotionis usedto obtainanimproved
estimateof structurewhichin turnis usedo re ne theesti-
mateof egomotion.Thealgorithmcornvergeson asolution
which providesconsisteng betweeregomotion recovered
shapeandtheimagesequence.

Non-uniqueness: Note that the solution obtainedby
sucha corvergentapproachs guaranteedo be consistent,
but notnecessarilynique.For example awell-knovn am-
biguity in SFM exists betweensmall rotationsand small
translationof the camera.Whenimaginga distantscene,
asmalltranslatiorto therightinducesauniform o w- eld,
with ow vectorspointing leftwards, and all parallel to
eachother On the otherhand,a small pan of the cam-
erato theright causesa very similar ow eld. Theonly
differencebetweerthetwo ow elds occursatthetopand
bottomof the elds: in the caseof panning,the o w vec-
torsarenot quite parallel,but ratherlie on slightly curved
lines. However, for small motions,andregular FOV, the
differences very dif cult to measure.

In the caseof SFM, the problemis reversed.Giventhe
imagesequencegnecancomputethe ow elds. Oneis
thenleft with theproblemof inferringthechangingcamera
pose,.e. whetherthe camerandeedpannedor translated.
Sincethe differencebetweenthetwo ow elds is belov
thenoiselevel of the o w- eld estimatiorprocessthetwo
egomotionscannotbe distinguishedaccurately

Sucherrorsin egomotionpropagteinto the estimation
of shapesinceatall timesconsistenyg betweershapegego-
motion, andimagerymustbe maintained. Thus, multiple
consistentsolutionsare possible. In our abore example,
onesolutionmay describea a camerawhich is translating
andslowly panningover a curved surface,while another
solution describesa non-rotatingcamerapanningover a

at surface. Both solutionswould be consistentwith the
inputimagery

Obtaining the "corr ect” solution:

In this paper we useother sensomrmodalitiesto force
SFM to converge to the solutionwhich bestmatcheshe
othersensomdata. As a result,the SFM solutionfor shape
becomesonsistentvith the bathymetric solution,andthe
resolutionof therecoreredsurfaceis vastlyenhanced.

In summary the bathymetry is usedto constrainthe
SFM algorithmto corverge on a solutionwhich matches
actualreal-world shapeandthe SFM resultsarethenused
to greatlyenhancehe resolutionof the recoveredterrain.
The fusion of the two complementarynodalitiesis better



Figure 1: Vehicleandsensorfootprint of the bathymet-
ric sonar During surwey operationghe vehicleis driven
very slowly sothatthe consecutie scansalongtrackare
closelyspacedor maximumredundang

thaneitheronecould produceindividually.

1.3 Contributions
Thecontritutionsof this paperare:

1. Toourknowledge thispaperrepresentthe rst quan-
titative evaluationof image-base@®FM and egomo-
tion accuray in alarge-scaleoutdoorervironment.

2. Thepapertillustrateshow SFM canbedirectedto con-
verge on a consistensolutionwhich is "close” to the
correctsolution, by incorporatingdatafrom comple-
mentarysensingnodalities.

3. A signal-level fusion of datafrom complementary
modalitieson alarge-scaleoutdoorreal-world scene.

2 Background

Thecon guration of the vehicle,cameraandside-scan
sonatris shavnin gure 1.

2.1 High resolution3D bathymetric mapping

Sonarsensorgapableof cm level resolutionin under
waterapplicationshave existed for decadesbut our abil-
ity to generateself-consistentapsattheseresolutionshas
until recentlybeenlimited by thelack of comparablenavi-
gationaccurag.

The Imagen& 675 Khz pencil beamsonar[1] usedin
collecting the datafor this paper for example,hasbeen
available commerciallyfor over 15 yearsandhasa range
resolutionof 1 cmandabeamangleto the3dB down point
of 1.5degrees.The navigationresolutionof acoustidong
baseling(LBL) systemswhich aretypically usedfor XY
navigation undervater on the other hand, is of the order
of 1-10m. Further the updateratesfor the sonarversus

thenavigationarealsosigni cantly different(10 Hz asop-
posedo 0.1 Hz respectiely).

Recentadwancesin navigation [8] - the useof higher
frequeng (300 kHz) LBL systemsthat can provide cm
level precisiontaken in combinationwith bottom lock
acoustidopplercurrentpro lers (ADCPs)thatprovide ve-
locity estimatest high updaterates- have yieldedXY es-
timatesof the orderof sensomprecisionandat comparable
updaterates.

Theoretically the constructionof a bathymetric map
is the simple processof compensatindor the coordinate
transformationghat corvert datain a sensoiframe (range
andanglefrom the sensor)to a vehicle coordinateframe
andthento aworld referencedtoordinatesystem.

Underthe assumptiorof perfectinformationthe batty-
metricsurey canbeexpressedy theequations

pv =S ps 1)
pw=V p=V S ps 2

where ps, py, and p, are the individual sonarsen-
sor readings(ping) coordinatesn the sensorvehicleand
world coordinateframesrespectiely as expressedn ho-
mogeneou§d 1] coordinates.

Sisthe[4 4]homogeneousoordinatdransformation
matrix which relatesthe sensorto vehicleframeandV is
the[4 4] homogeneousoordinatgransformatiormatrix
whichrelateshevehicleto world coordinateframe.

The resultsof simply applyingtheseequationgo data
acquiredfrom ve overlappingpassegFigure?2) is shavn
in Figure3. Theseresultsareseento beinconsistenbver
thedifferentpassesTheinconsisteng of theseresultshas
beenshowvn to beafunctionof thesmallcalibrationbiases
thatoccurdueto the distributednatureof the attitudesen-
sorsacrosghevehicle[6].

If we considerthe inexact estimatesof the S and V
transforms,the transformationof pingsto world coordi-
nateshaserrors

pe=Y S ps ©)

Sinceeachtransformhas6 degreesof freedomjt would
seemthattherearel2 parameterso determine However,

Pw=V S ps (4)
canalsobeexpresseds

p=V VW 1TV)(ShH S p (5)

where(X) ! V) isthetransformfrom theworld coordi-
nateframeto theapproximateehicleframeand(S $ 1)
is the transformfrom approximatevehicle frameto ideal
vehicleframe.

Dening
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Figure 2: Thefootprintsof ve overlappingbattymetric
swaths.Overlappingredundantiatais the mostpowerful
techniqueutilized undervaterto examineself consiteng
andthustheaccurag of amap.

=0 tv)y(ssSh (6)

we point out that the real world coordinatesare given
by:

pw=<7 é Ps (7)

Moreover, since is a transformationmatrix, it has
only 6 DOF andnot 12 as might have seemedriginally.
takestheform:

_ X
- 0 0 0 1 8)

where [3 3]istheattitudebiasof thesensoframe
with respecto thevehicleframeand x[3 1]istheposi-
tion biasof the sensoiframerelative to the vehicleframe.

It hasbeenshawn [6] that detailedsurney maneuers
canbe performedthatallow the estimationof . There-
sults of estimatingandcompensatingor areshowvn in
Figure3 whichareseerto beconsistento thelimits (5cm)
atwhich this datawasgridded.

2.2 Structur e-From-Motion

We use the describedin [3] to recover terrain shape
and cameramotion from a video sequence.The input to
the algorithmconsistsof the camera-to-wrld transforma-
tion for the rst referencdrameH,,, thefocal lengthand
somecoarseego-motionand shapeestimates. Note that
that thesecould be very coarse(suchas a fronto-parallel
planeatin nity for shapeor zeroego-motion). The out-
putis alist L of 3D pointsin world coordinateginitially
empty) andthe camera-to-wrld transformationdd;, for
every framei.

Jason 250 Lines 202 to 210. No Heading correction

Figure 3: A comparisorof bathymetricmappingbefore
and after compensatindor attitude biases. The head-
ing biastendsto smearoutindividual featuresalongtrack
while theroll biasanddepthoffsetsintroducelineardis-

continuitiesandsmearingperpendiculato the direction
of travel. This siteis a Phoeniciarshipwreckdatingto

750B.C. off of the coastof Israelin approximately400

metersof waterdepth
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Figure 4: Severalframesfrom alongersequencewith their respectre coordinatesystemgxy z). Theworld coordinatesystem
isdenoted X Y Z). Hj isthehomogeneousansformatiorbetweercoordinatesystems andj .

Theinputsequencés processeth batchegonsistingpf
afew consecutie frames,with at leastoneframeoverlap
betweenconsecutie batches. The algorithm repeatsthe
following steps:

Procesghe currentbatch,with referencdramer, as
describedin [3]. The resultis a densedepth map
D, in aframer centeredccoordinatesystemandego-
motion relative to the referenceframe for every in-
spectionmagei in thecurrentbatch( i, Ty ).
Projectevery pointin the currentdepthmapinto the
world coordinatesystemandaddit to the list of 3D
points:
L=L[ fHwdjd2D;g

If thisis thelastbatch,stop.

Let k denotethe referenceframe of the next batch.
FromH;,, «r, Tkr computecamera-to-wrld and
world-to cameraransformation$d yy, ; Hwk for I .
Projectthe pointsin L thatarevisible in | into Dy
(theinitial depthestimatefor the next batch)andre-
move themfrom L:

LO= ft 2 L jvisible(t;1;f)g
Dk = fHwt?jt°2 LY
L=LnL®

After processinghe lastbatch,L is alist of dense3D
pointsin the world coordinatesystem. For visualization,
the pointsare projectedon a planeand Delaunaytriangu-
lation is usedto generatea meshsuitablefor texture map-
ping. No additionalparametricsurface tting is used.

One obvious issuein comparingthe bathymetric and
SFM rangedatais the choiceof origin. Evena small off-
setbetweerthe positionandthe orientationof theoriginin
the two datasetsould leadto errorsthat are of the same
orderas producedby the SFM algorithmitself. Thusto
align the two independentatasetsve choseto manually

pick commonfeaturesacrosgshedatasetandto t asingle
afne transformatioracrosshesecommonfeatures.This
resultedn acommonorigin andorientationwith respecto
whichwe could make comparisons.

3 Experiments
3.1 Performanceevaluation: Romansequence

The rst exampleis usingdatacollectedat the site of
a Romanshipwreck. Figure 5 shavs the heightmapsob-
tainedfrom bathymetry (left) and SFM on a sequencef
11 frames.Figure6 shows a texture-mappedenderingof
theterrain. No navigationaldatawasusedin the SFM al-
gorithm. Sinceindividualamphoraearerelatively isolated,
thissequencallows usto hand-selecalignmentpointsbe-
tweenbathymetry and structureobtainedusing the SFM
algorithm.

We selectech smallnumberof points(12)in thetwo 3D
structuresand computeda rigid body transformatiorthat
bringsthe SFM datainto alignmentwith the bathymetry.
Figure 7 shaws a crosssectionthroughthe two surfaces
(the SFM surfaceis sampledat the sameresolutionasthe
bathymetry). Notethattheoverallterraincon gurationhas
beencorrectlyrecoveredby SFM.

3.2 Performance evaluation:
quence

The secondexample is for a longer sequence(56
frames) at the site of a Phoenicianshipwreck. Fig-
ure 8 (bottom) shaws the terrain structureobtainedfrom
battymetryandthe camergpositionover time, asreported
by the navigation system.Theterrainis presenteésa 3D
meshwith false-colorcodingof height. Theleft partshavs
a top-davn view, andthe right sidea “side” view, which
illustratesthe terrain con guration. Unit axesare meters
(the negative valuesfor the Z axisrepresentiepthre mean
sedlevel).

The top row shaws resultsfrom the SFM algorithm.

Phoenician se-



Figure 5: Heightmaprecoveredfrom bathymetry (left)
and SFM (right). The differencein resolutionis easily
notable

Figure 6: Texture-mappedenderingof the terrainre-
coveredfrom SFM.
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Figure 7: Comparisonof 3D recovered from image-
basedSFM (reddots)andbathymetry(bluecircles).The
unitsaremetersfor bothaxes

The sequencef 56 frameswas processedn consecutie
batcheg(2 framesat a time). Information aboutcamera
motionwasprovidedfor the rst batch,in orderto getthe
right scalefactor Onecanseefrom the resultsthat the
algorithm*“drifts” over time. While local structureis cor
rectly recorered the globashapeof theterrainis not. This
is mainly dueto the small rotationvs. small translation
confusion(asdiscussedh theintroduction).
Thecentemrow shavs theresultsof the SFM algorithm,
with navigationaldataprovided asinitial ego-motionesti-
matedor everybatch.Theoveraldrift hasbeereliminated.

4 Conclusion

We presentedxamplesof multi-modaldatacombina-
tion for recovering high-resolutionterrain structureover
extendedareas. By using navigational datato constrain
a structurefrom motion algorithm, we shaved that the
“drift” of the SFM algorithm over long video sequences
canbegreatlyreduced.

A known solutionfor obtainingglobally correctshape
is to usebundle adjustmen{[7]) asa nal stepin SFM.
However, the bundle adjustmentstepis time consuming,
and canonly be applied after all the datahasbeenpro-
cessed By usingnavigationaldataasinitial estimategor
SFM, resultscanbe obtainedcontinuously asthe vehicle
movesthroughthe ervironment.
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